2,317 research outputs found

    Dynamical susceptibilities in strong coupling approach

    Full text link
    A general scheme to calculate dynamical susceptibilities of strongly correlated electron systems within the dynamical mean field theory is developed. Approach is based on an expansion over electron hopping around the atomic limit (within the diagrammatic technique for site operators: projection and Hubbard ones) in infinite dimensions. As an example, the Falicov-Kimball and simplified pseudospin-electron models are considered for which an analytical expressions for dynamical susceptibilities are obtained.Comment: 2 pages, 3 eps figures, final version published in proceedings of M2S-HTSC-VI (Houston

    Dynamical mean-field theory for the normal phase of the attractive Hubbard model

    Full text link
    We analyze the normal phase of the attractive Hubbard model within dynamical mean-field-theory. We present results for the pair-density, the spin-susceptibility, the specific heat, the momentum distribution, and for the quasiparticle weight. At weak coupling the low-temperature behavior of all quantities is consistent with Fermi liquid theory. At strong coupling all electrons are bound pairs, which leads to a spin gap and removes fermionic quasi-particle excitations. The transition between the Fermi liquid phase and the pair phase takes place at a critical coupling of the order of the band-width and is generally discontinuous at sufficiently low temperatures

    Volume fraction variations and dilation in colloids and granulars

    Get PDF
    Discusses the importance of spatial and temporal variations in particle volume fraction to understanding the force response of concentrated colloidal suspensions and granular materials

    Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors

    Full text link
    We study the transport of spin polarized electrons in n-GaAs using spatially resolved continuous wave Faraday rotation. From the measured steady state distribution, we determine spin relaxation times under drift conditions and, in the presence of strain, the induced spin splitting from the observed spin precession. Controlled variation of strain along [110] allows us to deduce the deformation potential causing this effect, while strain along [100] has no effect. The electric field dependence of the spin lifetime is explained quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure

    Exact analytic results for the Gutzwiller wave function with finite magnetization

    Full text link
    We present analytic results for ground-state properties of Hubbard-type models in terms of the Gutzwiller variational wave function with non-zero values of the magnetization m. In dimension D=1 approximation-free evaluations are made possible by appropriate canonical transformations and an analysis of Umklapp processes. We calculate the double occupation and the momentum distribution, as well as its discontinuity at the Fermi surface, for arbitrary values of the interaction parameter g, density n, and magnetization m. These quantities determine the expectation value of the one-dimensional Hubbard Hamiltonian for any symmetric, monotonically increasing dispersion epsilon_k. In particular for nearest-neighbor hopping and densities away from half filling the Gutzwiller wave function is found to predict ferromagnetic behavior for sufficiently large interaction U.Comment: REVTeX 4, 32 pages, 8 figure

    Pseudogap at hot spots in the two-dimensional Hubbard model at weak coupling

    Full text link
    We analyze the interaction-induced renormalization of single-particle excitations in the two-dimensional Hubbard model at weak coupling using the Wick-ordered version of the functional renormalization group. The self energy is computed for real frequencies by integrating a flow equation with renormalized two-particle interactions. In the vicinity of hot spots, that is points where the Fermi surface intersects the umklapp surface, self energy effects beyond the usual quasi-particle renormalizations and damping occur near instabilities of the normal, metallic phase. Strongly enhanced renormalized interactions between particles at different hot spots generate a pronounced low-energy peak in the imaginary part of the self energy, leading to a pseudogap-like double-peak structure in the spectral function for single-particle excitations.Comment: 14 pages, 7 figure

    Correlated hopping of electrons: Effect on the Brinkman-Rice transition and the stability of metallic ferromagnetism

    Full text link
    We study the Hubbard model with bond-charge interaction (`correlated hopping') in terms of the Gutzwiller wave function. We show how to express the Gutzwiller expectation value of the bond-charge interaction in terms of the correlated momentum-space occupation. This relation is valid in all spatial dimensions. We find that in infinite dimensions, where the Gutzwiller approximation becomes exact, the bond-charge interaction lowers the critical Hubbard interaction for the Brinkman-Rice metal-insulator transition. The bond-charge interaction also favors ferromagnetic transitions, especially if the density of states is not symmetric and has a large spectral weight below the Fermi energy.Comment: 5 pages, 3 figures; minor changes, published versio

    Quantum phase transitions and collapse of the Mott gap in the d=1+ϵd=1+\epsilon dimensional half-filled Hubbard model

    Get PDF
    We study the low-energy asymptotics of the half-filled Hubbard model with a circular Fermi surface in d=1+ϵd=1+\epsilon continuous dimensions, based on the one-loop renormalization-group (RG) method. Peculiarity of the d=1+ϵd=1+\epsilon dimensions is incorporated through the mathematica structure of the elementary particle-partcile (PP) and particle-hole (PH) loops: infrared logarithmic singularity of the PH loop is smeared for ϵ>0\epsilon>0. The RG flows indicate that a quantum phase transition (QPT) from a metallic phase to the Mott insulator phase occurs at a finite on-site Coulomb repulsion UU for ϵ>0\epsilon>0. We also discuss effects of randomness.Comment: 12 pages, 10 eps figure
    corecore